Logo

0x3d.Site

is designed for aggregating information.
Welcome
check repository here

m2cgen

GitHub Actions Status Coverage Status License: MIT Python Versions PyPI Version Downloads

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code (Python, C, Java, Go, JavaScript, Visual Basic, C#, PowerShell, R, PHP, Dart, Haskell, Ruby, F#, Rust, Elixir).

Installation

Supported Python version is >= 3.7.

pip install m2cgen

Development

Make sure the following command runs successfully before submitting a PR:

make pre-pr

Alternatively you can run the Docker version of the same command:

make docker-build docker-pre-pr

Supported Languages

  • C
  • C#
  • Dart
  • F#
  • Go
  • Haskell
  • Java
  • JavaScript
  • PHP
  • PowerShell
  • Python
  • R
  • Ruby
  • Rust
  • Visual Basic (VBA-compatible)
  • Elixir

Supported Models

ClassificationRegression
Linear
  • scikit-learn
    • LogisticRegression
    • LogisticRegressionCV
    • PassiveAggressiveClassifier
    • Perceptron
    • RidgeClassifier
    • RidgeClassifierCV
    • SGDClassifier
  • lightning
    • AdaGradClassifier
    • CDClassifier
    • FistaClassifier
    • SAGAClassifier
    • SAGClassifier
    • SDCAClassifier
    • SGDClassifier
  • scikit-learn
    • ARDRegression
    • BayesianRidge
    • ElasticNet
    • ElasticNetCV
    • GammaRegressor
    • HuberRegressor
    • Lars
    • LarsCV
    • Lasso
    • LassoCV
    • LassoLars
    • LassoLarsCV
    • LassoLarsIC
    • LinearRegression
    • OrthogonalMatchingPursuit
    • OrthogonalMatchingPursuitCV
    • PassiveAggressiveRegressor
    • PoissonRegressor
    • RANSACRegressor(only supported regression estimators can be used as a base estimator)
    • Ridge
    • RidgeCV
    • SGDRegressor
    • TheilSenRegressor
    • TweedieRegressor
  • StatsModels
    • Generalized Least Squares (GLS)
    • Generalized Least Squares with AR Errors (GLSAR)
    • Generalized Linear Models (GLM)
    • Ordinary Least Squares (OLS)
    • [Gaussian] Process Regression Using Maximum Likelihood-based Estimation (ProcessMLE)
    • Quantile Regression (QuantReg)
    • Weighted Least Squares (WLS)
  • lightning
    • AdaGradRegressor
    • CDRegressor
    • FistaRegressor
    • SAGARegressor
    • SAGRegressor
    • SDCARegressor
    • SGDRegressor
SVM
  • scikit-learn
    • LinearSVC
    • NuSVC
    • OneClassSVM
    • SVC
  • lightning
    • KernelSVC
    • LinearSVC
  • scikit-learn
    • LinearSVR
    • NuSVR
    • SVR
  • lightning
    • LinearSVR
Tree
  • DecisionTreeClassifier
  • ExtraTreeClassifier
  • DecisionTreeRegressor
  • ExtraTreeRegressor
Random Forest
  • ExtraTreesClassifier
  • LGBMClassifier(rf booster only)
  • RandomForestClassifier
  • XGBRFClassifier
  • ExtraTreesRegressor
  • LGBMRegressor(rf booster only)
  • RandomForestRegressor
  • XGBRFRegressor
Boosting
  • LGBMClassifier(gbdt/dart/goss booster only)
  • XGBClassifier(gbtree(including boosted forests)/gblinear booster only)
    • LGBMRegressor(gbdt/dart/goss booster only)
    • XGBRegressor(gbtree(including boosted forests)/gblinear booster only)

    You can find versions of packages with which compatibility is guaranteed by CI tests here. Other versions can also be supported but they are untested.

    Classification Output

    Linear / Linear SVM / Kernel SVM

    Binary

    Scalar value; signed distance of the sample to the hyperplane for the second class.

    Multiclass

    Vector value; signed distance of the sample to the hyperplane per each class.

    Comment

    The output is consistent with the output of LinearClassifierMixin.decision_function.

    SVM

    Outlier detection

    Scalar value; signed distance of the sample to the separating hyperplane: positive for an inlier and negative for an outlier.

    Binary

    Scalar value; signed distance of the sample to the hyperplane for the second class.

    Multiclass

    Vector value; one-vs-one score for each class, shape (n_samples, n_classes * (n_classes-1) / 2).

    Comment

    The output is consistent with the output of BaseSVC.decision_function when the decision_function_shape is set to ovo.

    Tree / Random Forest / Boosting

    Binary

    Vector value; class probabilities.

    Multiclass

    Vector value; class probabilities.

    Comment

    The output is consistent with the output of the predict_proba method of DecisionTreeClassifier / ExtraTreeClassifier / ExtraTreesClassifier / RandomForestClassifier / XGBRFClassifier / XGBClassifier / LGBMClassifier.

    Usage

    Here's a simple example of how a linear model trained in Python environment can be represented in Java code:

    from sklearn.datasets import load_diabetes
    from sklearn import linear_model
    import m2cgen as m2c
    
    X, y = load_diabetes(return_X_y=True)
    
    estimator = linear_model.LinearRegression()
    estimator.fit(X, y)
    
    code = m2c.export_to_java(estimator)
    

    Generated Java code:

    public class Model {
        public static double score(double[] input) {
            return ((((((((((152.1334841628965) + ((input[0]) * (-10.012197817470472))) + ((input[1]) * (-239.81908936565458))) + ((input[2]) * (519.8397867901342))) + ((input[3]) * (324.39042768937657))) + ((input[4]) * (-792.1841616283054))) + ((input[5]) * (476.74583782366153))) + ((input[6]) * (101.04457032134408))) + ((input[7]) * (177.06417623225025))) + ((input[8]) * (751.2793210873945))) + ((input[9]) * (67.62538639104406));
        }
    }
    

    You can find more examples of generated code for different models/languages here.

    CLI

    m2cgen can be used as a CLI tool to generate code using serialized model objects (pickle protocol):

    $ m2cgen <pickle_file> --language <language> [--indent <indent>] [--function_name <function_name>]
             [--class_name <class_name>] [--module_name <module_name>] [--package_name <package_name>]
             [--namespace <namespace>] [--recursion-limit <recursion_limit>]
    

    Don't forget that for unpickling serialized model objects their classes must be defined in the top level of an importable module in the unpickling environment.

    Piping is also supported:

    $ cat <pickle_file> | m2cgen --language <language>
    

    FAQ

    Q: Generation fails with RecursionError: maximum recursion depth exceeded error.

    A: If this error occurs while generating code using an ensemble model, try to reduce the number of trained estimators within that model. Alternatively you can increase the maximum recursion depth with sys.setrecursionlimit(<new_depth>).

    Q: Generation fails with ImportError: No module named <module_name_here> error while transpiling model from a serialized model object.

    A: This error indicates that pickle protocol cannot deserialize model object. For unpickling serialized model objects, it is required that their classes must be defined in the top level of an importable module in the unpickling environment. So installation of package which provided model's class definition should solve the problem.

    Q: Generated by m2cgen code provides different results for some inputs compared to original Python model from which the code were obtained.

    A: Some models force input data to be particular type during prediction phase in their native Python libraries. Currently, m2cgen works only with float64 (double) data type. You can try to cast your input data to another type manually and check results again. Also, some small differences can happen due to specific implementation of floating-point arithmetic in a target language.

    Elixir
    Elixir
    Elixir is a dynamic, functional programming language designed for building scalable and maintainable applications. Built on the Erlang VM, it's known for its high concurrency and fault tolerance, making it ideal for real-time systems and web services.
    GitHub - chrismccord/atlas: Object Relational Mapper for Elixir
    GitHub - chrismccord/atlas: Object Relational Mapper for Elixir
    GitHub - mbuhot/ecto_job: Transactional job queue with Ecto, PostgreSQL and GenStage
    GitHub - mbuhot/ecto_job: Transactional job queue with Ecto, PostgreSQL and GenStage
    GitHub - zamith/tomlex: A TOML parser for elixir
    GitHub - zamith/tomlex: A TOML parser for elixir
    GitHub - pablomartinezalvarez/glayu: A static site generator for mid-sized sites.
    GitHub - pablomartinezalvarez/glayu: A static site generator for mid-sized sites.
    GitHub - jui/mustachex: Mustache for Elixir
    GitHub - jui/mustachex: Mustache for Elixir
    GitHub - joaothallis/elixir-auto-test: Run test when file is saved
    GitHub - joaothallis/elixir-auto-test: Run test when file is saved
    GitHub - campezzi/ignorant: Simplify comparison of Elixir data structures by ensuring fields are present but ignoring their values.
    GitHub - campezzi/ignorant: Simplify comparison of Elixir data structures by ensuring fields are present but ignoring their values.
    GitHub - Driftrock/mockingbird: A set of helpers to create http-aware modules that are easy to test.
    GitHub - Driftrock/mockingbird: A set of helpers to create http-aware modules that are easy to test.
    GitHub - gutschilla/elixir-pdf-generator: Create PDFs with wkhtmltopdf or puppeteer/chromium from Elixir.
    GitHub - gutschilla/elixir-pdf-generator: Create PDFs with wkhtmltopdf or puppeteer/chromium from Elixir.
    GitHub - antirez/disque: Disque is a distributed message broker
    GitHub - antirez/disque: Disque is a distributed message broker
    GitHub - jcomellas/ex_hl7: HL7 Parser for Elixir
    GitHub - jcomellas/ex_hl7: HL7 Parser for Elixir
    GitHub - Cirru/parser.ex: Cirru Parser in Elixir
    GitHub - Cirru/parser.ex: Cirru Parser in Elixir
    GitHub - thiamsantos/pwned: Check if your password has been pwned
    GitHub - thiamsantos/pwned: Check if your password has been pwned
    GitHub - suvash/hulaaki: DEPRECATED : An Elixir library (driver) for clients communicating with MQTT brokers(via the MQTT 3.1.1 protocol).
    GitHub - suvash/hulaaki: DEPRECATED : An Elixir library (driver) for clients communicating with MQTT brokers(via the MQTT 3.1.1 protocol).
    GitHub - sinetris/factory_girl_elixir: Minimal implementation of Ruby's factory_girl in Elixir.
    GitHub - sinetris/factory_girl_elixir: Minimal implementation of Ruby's factory_girl in Elixir.
    GitHub - navinpeiris/ex_unit_notifier: Desktop notifications for ExUnit
    GitHub - navinpeiris/ex_unit_notifier: Desktop notifications for ExUnit
    GitHub - DefactoSoftware/test_selector: Elixir library to help selecting the right elements in your tests.
    GitHub - DefactoSoftware/test_selector: Elixir library to help selecting the right elements in your tests.
    GitHub - xerions/ecto_migrate: Automatic migrations for ecto
    GitHub - xerions/ecto_migrate: Automatic migrations for ecto
    GitHub - meh/reagent: You need more reagents to conjure this server.
    GitHub - meh/reagent: You need more reagents to conjure this server.
    GitHub - stevegraham/hypermock: HTTP request stubbing and expectation Elixir library
    GitHub - stevegraham/hypermock: HTTP request stubbing and expectation Elixir library
    GitHub - msharp/elixir-statistics: Statistical functions and distributions for Elixir
    GitHub - msharp/elixir-statistics: Statistical functions and distributions for Elixir
    GitHub - Joe-noh/colorful: colorful is justice
    GitHub - Joe-noh/colorful: colorful is justice
    GitHub - ijcd/taggart: HTML as code in Elixir
    GitHub - ijcd/taggart: HTML as code in Elixir
    Build software better, together
    Build software better, together
    GitHub - yeshan333/ex_integration_coveralls: A library for run-time system code line-level coverage analysis.
    GitHub - yeshan333/ex_integration_coveralls: A library for run-time system code line-level coverage analysis.
    GitHub - PSPDFKit-labs/cobertura_cover: Output test coverage information in Cobertura-compatible format
    GitHub - PSPDFKit-labs/cobertura_cover: Output test coverage information in Cobertura-compatible format
    GitHub - basho/enm: Erlang driver for nanomsg
    GitHub - basho/enm: Erlang driver for nanomsg
    GitHub - pawurb/ecto_psql_extras: Ecto PostgreSQL database performance insights. Locks, index usage, buffer cache hit ratios, vacuum stats and more.
    GitHub - pawurb/ecto_psql_extras: Ecto PostgreSQL database performance insights. Locks, index usage, buffer cache hit ratios, vacuum stats and more.
    GitHub - crate/craterl: Client Libraries for Erlang
    GitHub - crate/craterl: Client Libraries for Erlang
    GitHub - sheharyarn/ecto_rut: Ecto Model shortcuts to make your life easier! :tada:
    GitHub - sheharyarn/ecto_rut: Ecto Model shortcuts to make your life easier! :tada:
    Elixir
    More on Elixir

    Programming Tips & Tricks

    Code smarter, not harder—insider tips and tricks for developers.

    Error Solutions

    Turn frustration into progress—fix errors faster than ever.

    Shortcuts

    The art of speed—shortcuts to supercharge your workflow.
    1. Collections 😎
    2. Frequently Asked Question's 🤯

    Tools

    available to use.

    Made with ❤️

    to provide resources in various ares.