0x3d.Site
is designed for aggregating information.
haskell-to-elm
haskell-to-elm
is a library that takes Haskell type definitions as input and
generates matching Elm type definitions and JSON encoders and decoders that
match Aeson's format.
The problem
Let's say we're building a web page with a Haskell backend and an Elm frontend.
We might have a Haskell type like this, that we pass to the frontend encoded as JSON. The JSON encoder is derived using the Aeson library.
data User = User
{ name :: Text
, age :: Int
} deriving (Generic, ToJSON)
We mirror the type on the Elm side and add a JSON decoder as follows:
type alias User =
{ name : String
, age : Int
}
decoder : Decoder User
decoder =
Decode.map2 User
(Decode.field "name" Decode.string)
(Decode.field "age" Decode.int)
Now, let's say we want to change a field in the backend:
-- Haskell
data User = User
{ name :: Text
--, age :: Int
, birthday :: Date -- <---- new!
} deriving (Generic, ToJSON)
If we now run the application again, but forget to update the Elm code, the
User
decoder will fail at runtime in Elm.
The solution
haskell-to-elm
solves this problem by letting us generate the Elm User
type and decoder
from the Haskell User
type.
With haskell-to-elm
as part of your build pipeline you can make sure that the
frontend is always in sync with your backend, and get type errors in your
frontend code when you change your backend types.
The companion library servant-to-elm also lets you generate Elm client libraries for your Servant APIs.
Basic usage
To generate code for the User
type above, we first need to derive a bunch of class instances:
data User = User
{ name :: Text
, age :: Int
} deriving (Generic, Aeson.ToJSON, SOP.Generic, SOP.HasDatatypeInfo)
instance HasElmType User where
elmDefinition =
Just $ deriveElmTypeDefinition @User defaultOptions "Api.User.User"
instance HasElmDecoder Aeson.Value User where
elmDecoderDefinition =
Just $ deriveElmJSONDecoder @User defaultOptions Aeson.defaultOptions "Api.User.decoder"
instance HasElmEncoder Aeson.Value User where
elmEncoderDefinition =
Just $ deriveElmJSONEncoder @User defaultOptions Aeson.defaultOptions "Api.User.encoder"
Then we can print the generated Elm code using the following code:
main :: IO ()
main = do
let
definitions =
Simplification.simplifyDefinition <$>
jsonDefinitions @User
modules =
Pretty.modules definitions
forM_ (HashMap.toList modules) $ \(_moduleName, contents) ->
print contents
Running main
will print the following Elm code:
module Api.User exposing (..)
import Json.Decode
import Json.Decode.Pipeline
import Json.Encode
type alias User =
{ name : String, age : Int }
encoder : User -> Json.Encode.Value
encoder a =
Json.Encode.object [ ("name" , Json.Encode.string a.name)
, ("age" , Json.Encode.int a.age) ]
decoder : Json.Decode.Decoder User
decoder =
Json.Decode.succeed User |>
Json.Decode.Pipeline.required "name" Json.Decode.string |>
Json.Decode.Pipeline.required "age" Json.Decode.int
In an actual project we would be writing the code to disk instead of printing it.
See this file for the full code with imports.
Parameterised types
Since version 0.3.0.0, haskell-to-elm
supports generating code for types with type parameters.
For example, let's say we have the following Haskell type:
data Result e a
= Err e
| Ok a
deriving (Generic, Aeson.ToJSON, SOP.Generic, SOP.HasDatatypeInfo)
We can derive the corresponding Elm type and JSON encoders and decoder definitions with the following code:
instance HasElmType Result where
elmDefinition =
Just $ deriveElmTypeDefinition @Result defaultOptions "Api.Result.Result"
instance HasElmDecoder Aeson.Value Result where
elmDecoderDefinition =
Just $ deriveElmJSONDecoder @Result defaultOptions Aeson.defaultOptions "Api.Result.decoder"
instance HasElmEncoder Aeson.Value Result where
elmEncoderDefinition =
Just $ deriveElmJSONEncoder @Result defaultOptions Aeson.defaultOptions "Api.Result.encoder"
For parameterised types we also have to add instances for how to handle the type when it's fully applied to type arguments. Like this:
instance (HasElmType a, HasElmType b) => HasElmType (Result a b) where
elmType =
Type.apps (elmType @Result) [elmType @a, elmType @b]
instance (HasElmDecoder Aeson.Value a, HasElmDecoder Aeson.Value b) => HasElmDecoder Aeson.Value (Result a b) where
elmDecoder =
Expression.apps (elmDecoder @Aeson.Value @Result) [elmDecoder @Aeson.Value @a, elmDecoder @Aeson.Value @b]
instance (HasElmEncoder Aeson.Value a, HasElmDecoder Aeson.Value b) => HasElmEncoder Aeson.Value (Result a b) where
elmEncoder =
Expression.apps (elmEncoder @Aeson.Value @Result) [elmEncoder @Aeson.Value @a, elmDecoder @Aeson.Value @b]
The rationale for having two instances of the classes for each type is that we both have to describe how the type is defined (with the unapplied instances), which generates parameterised definitions, and then we describe how to actually use those parameterised definitions with the applied instances.
These instances print the following code when run:
module Api.Result exposing (..)
import Json.Decode
import Json.Decode.Pipeline
import Json.Encode
type Result a b
= Err a
| Ok b
encoder : (a -> Json.Encode.Value) -> (b -> Json.Encode.Value) -> Result a b -> Json.Encode.Value
encoder a b c =
case c of
Err d ->
Json.Encode.object [ ("tag" , Json.Encode.string "Err")
, ("contents" , a d) ]
Ok d ->
Json.Encode.object [ ("tag" , Json.Encode.string "Ok")
, ("contents" , b d) ]
decoder : Json.Decode.Decoder a -> Json.Decode.Decoder b -> Json.Decode.Decoder (Result a b)
decoder a b =
Json.Decode.field "tag" Json.Decode.string |>
Json.Decode.andThen (\c -> case c of
"Err" ->
Json.Decode.succeed Err |>
Json.Decode.Pipeline.required "contents" a
"Ok" ->
Json.Decode.succeed Ok |>
Json.Decode.Pipeline.required "contents" b
_ ->
Json.Decode.fail "No matching constructor")
Notice that the generated encoder and decoder are parameterised by the encoder and decoder for the type arguments.
See this file for the full code with imports.
Using DerivingVia
to reduce boilerplate
We can use the DerivingVia
extension to reduce some of the boilerplate that
this library requires. This requires GHC version >= 8.8, because earlier
versions had a bug that prevented it to work.
In this file we define a type called ElmType
that
we derive both the haskell-to-elm
and Aeson classes through.
After having defined that type, the code for User
is simply:
data User = User
{ _name :: Text
, _age :: Int
} deriving (Generic, SOP.Generic, SOP.HasDatatypeInfo)
deriving (Aeson.ToJSON, Aeson.FromJSON, HasElmType, HasElmDecoder Aeson.Value, HasElmEncoder Aeson.Value) via ElmType "Api.User.User" User
This also means that we can ensure that we pass the same Aeson options to this library's Elm code generation functions and Aeson's JSON derivation functions, meaning that we don't risk mismatched JSON formats.
Roadmap
- Derive JSON encoders and generically
- Support all Aeson options (issue here)
- Pretty-print the Elm AST
- Separate pretty printing from code generation: elm-syntax
- Generate Elm modules
- Servant client library generation: servant-to-elm
- Test that encoding and decoding round-trip: haskell-to-elm-test
- Support parameterised types
Related projects
Libraries that use or are used by haskell-to-elm:
- elm-syntax defines Haskell ASTs for Elm's syntax, and lets us pretty-print it.
- servant-to-elm can be used to generate Elm client libraries from Servant APIs.
- haskell-to-elm-test does end-to-end testing of this library.
Others:
Programming Tips & Tricks
Code smarter, not harder—insider tips and tricks for developers.
#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
Error Solutions
Turn frustration into progress—fix errors faster than ever.
#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
Shortcuts
The art of speed—shortcuts to supercharge your workflow.
#1
#2
#3
#4
#5
#6
#7
#8
#9
#10
Made with ❤️
to provide resources in various ares.